

Diffusion Rewards Guided Adversarial Imitation Learning

Chun-Mao Lai*

Hsiang-Chun Wang*

Ping-Chun Hsieh

Yu-Chiang Frank Wang

Min-Hung Chen Shao-Hua Sun

National Taiwan University

Adversarial Imitation Learning

Reward Function Visualization

DRAIL Reward (Ours)

Diffusion Rewards Guided Adversarial Imitation Learning (DRAIL)

(a) Learning Diffusion Discriminative Classifier

Diffusion discriminative classifier learns to distinguish expert data $(\mathbf{s}_{E}, \mathbf{a}_{E})$ from agent data $(\mathbf{s}_{i}, \mathbf{a}_{i})$ using a diffusion model ϕ by denoising expert and agent state-action pairs concatenated with a real/expert label c^+ or a fake/agent label c^- .

• Diffusion Loss
$$\mathcal{L}_{ ext{diff}}(\mathbf{s}, \mathbf{a}, \mathbf{c}) = \mathbb{E}_{t \sim T} \left[\| \hat{\boldsymbol{\epsilon}}_{\phi}(\mathbf{s}, \mathbf{a}, \boldsymbol{\epsilon}, t | \mathbf{c}) - \boldsymbol{\epsilon} \|^2 \right]$$

(b) Learning Policy with Diffusion Rewards

Policy π_{θ} learns to maximize the diffusion reward computed based on the output of the diffusion discriminative classifier D_{d} that takes the state-action pairs from the policy as input.

