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(a) Learning a Diffusion Model (b) Learning a Policy with the Learned Diffusion Model
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Modeling Conditional Probability p(a | ) vs Joint probability p(s, a)

Behavioral Cloning (BC): Directly learns a state-to-action mapping as a policy

Implicit BC: Learns an energy-based model E(o, a) and samples actions given

an observation
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Conditional Probability p(a | s) — Struggles at Generalizing
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Joint probability p(s, a) = Suffers from Manifold Overfitting
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Modeling Expert State-Action Pair Distribution with Diffusion Model

Learning from Demonstration
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Learning a Policy with the Learned Diffusion Model
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Experiments - Generative Models
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Takeaway

Combining both the advantages of modeling the conditional probability p(a|s)

and the joint probability p(s, a) of expert state-action pair distributions
Model the expert state-action pair distribution with a diffusion model

Leverage the learned diffusion model to learn a policy that mimics the expert
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Rewards From This Project (Hsiang-Chun)

Learn how to adjust the project progress dynamically

o There are always problems when doing research

o |t Is Important to organize and summarize the progress
Paper Writing Skill is Important

—valuate your own ability properly is essential

Next time, | want to push myself and earn leeway on the project deadline

Gratitude to our respected protessor and my teammate



Rewards From This Project (Ming-Hao)

* Code Synchronization
o During the research process, code synchronization can pose a significant
challenge. It's essential to establish a robust system that allows all team
members to work on the same codebase and maintain consistency.
* Experiment Settings
o Deciding on and setting up experiments is another area that requires
effective teamwork. Developing a shared understanding and
agreement on experimental conditions can signiticantly enhance the

team's overall efficiency.



Rewards From This Project (Ming-Hao)

* Explaining Results

o A crucial part of team collaboration is the ability to interpret and explain

experiment results logically and concisely. This includes identifying key

findings, drawing valid conclusions, and linking results to the research

objectives.
* Experiment Design for Hypothesis Checking

o Following the interpretation of results, new experiments may be needed to

validate or refute hypotheses. The team must work together to design follow-

up experiments, ensuring they are eftectively targeted towards hypothesis

testing.



Rewards From This Project (Ming-Hao)

* Resource Management

o Efficient team communication also extends to the allocation and management

of resources. This involves sharing, requesting, and efficiently utilizing
resources, including equipment, software, and information.
* Reporting Results
o Another key aspect of team communication is the reporting of results. This
involves sharing progress updates, preliminary findings, and final results in a

manner that Is clear, concise, and accessible to all team members.



Conclusion

* Reinforce the importance of these skills in fostering eftective team collaboration.
The ability to collaborate efficiently is essential in the modern workplace, helping

to solve complex problems, improve productivity, and ultimately contribute to the

successful completion of projects.
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