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ABSTRACT

Imitation learning aims to learn a policy from observing expert demonstrations with-
out access to reward signals from environments. Generative adversarial imitation
learning (GAIL) formulates imitation learning as adversarial learning, employing
a generator policy learning to imitate expert behaviors and discriminator learn-
ing to distinguish the expert demonstrations from agent trajectories. Despite its
encouraging results, GAIL training is often brittle and unstable. Inspired by the
recent dominance of diffusion models in generative modeling, this work proposes
diffusion rewards guided adversarial imitation learning (DRAIL), which integrates
a diffusion model into GAIL, aiming to yield more precise and smoother rewards
for policy learning. Specifically, we propose a diffusion discriminative classifier
to construct an enhanced discriminator; then, we design diffusion rewards based
on the classifier’s output for policy learning. We conduct extensive experiments
in navigation, manipulation, and locomotion, verifying DRAIL’s effectiveness
compared to prior imitation learning methods. Moreover, additional experimental
results demonstrate the generalizability and data efficiency of DRAIL. Visualized
learned reward functions of GAIL and DRAIL suggest that DRAIL can produce
more precise and smoother rewards.

1 INTRODUCTION

Imitation learning, or learning from demonstration (Schaal, 1997; Hussein et al., 2017; Osa et al.,
2018), aims to learn an agent policy by observing and mimicking the behavior demonstrated in
expert demonstrations. Various imitation learning methods (Zhao et al., 2023; Swamy et al., 2023)
have enabled deploying reliable and robust learned policies in a variety of tasks involving sequential
decision-making, especially in scenarios where formulating a reward function is intricate or uncer-
tain (Christiano et al., 2017; Leike et al., 2018; Lee et al., 2019), or when learning in a trial-and-error
manner is expensive or unsafe (Garcıa & Fernández, 2015; Gu et al., 2022).

Among various directions in imitation learning, generative adversarial imitation learning (GAIL) (Ho
& Ermon, 2016) has received increasing attention. GAIL learns a generator policy to imitate expert
behaviors through reinforcement learning and a discriminator to differentiate between the expert
and the generator’s state-action pair distributions, resembling the idea of generative adversarial
networks (GANs; Goodfellow et al., 2014). Despite its encouraging results, GAIL training can
often be brittle and unstable. To address this issue, significant efforts have been put into improving
GAIL’s sample efficiency, scalability, robustness, and generalizability by modifying loss functions (Fu
et al., 2018), designing policy learning algorithms (Kostrikov et al., 2019a), and exploring similarity
measures of distributions (Fu et al., 2018; Arjovsky et al., 2017; Dadashi et al., 2020).

Inspired by the recent dominance of diffusion models in generative modeling (Ho et al., 2020), this
work explores incorporating diffusion models into GAIL to provide more precise and smoother
reward functions for policy learning. An intuitive implementation involves learning a diffusion model
to reconstruct a real/fake label conditioning on a state-action pair. However, using such a diffusion
model to compute a reward for a single policy step requires undergoing an iterative generation process,
taking hundreds of reverse diffusion steps, which is highly time-consuming and thus impractical for
reinforcement learning policies.

In this work, we propose a diffusion discriminative classifier, which learns to classify a state-action
pair into expert demonstrations or agent trajectories with merely two reverse diffusion steps. Then,

1



Under review as a conference paper at ICLR 2024

we leverage the proposed diffusion discriminative classifier to devise diffusion rewards, which reward
agent behaviors that closely align with expert demonstrations. Putting them together, we present
Diffusion Rewards Guided Adversarial Imitation Learning (DRAIL), a novel adversarial imitation
learning framework that can efficiently and effectively produce reliable policies replicating the
behaviors of experts.

We extensively compare our proposed framework DRAIL with behavioral cloning methods, e.g.,
Diffusion Policy (Pearce et al., 2023; Chi et al., 2023), and AIL methods, e.g., GAIL (Ho &
Ermon, 2016) and WAIL (Arjovsky et al., 2017), in diverse continuous control domains, including
navigation, robot arm manipulation, and locomotion. The experimental results show that our proposed
framework consistently outperforms the baselines or achieves competitive performance. We evaluate
the generalizability of the policies learned by different methods, demonstrating the superiority of
DRAIL. Moreover, we vary the amounts of available expert data, and the results suggest that DRAIL
is more data-efficient than BC and GAIL. We visualize the reward functions learned by GAIL and
DRAIL, which shows that DRAIL captures more precise and smoother rewards.

2 RELATED WORK

Imitation learning enables agents to learn from expert demonstration to acquire complex behaviors
without explicit reward functions. Its application spans various domains, including robotics (Schaal,
1997; Zhao et al., 2023), autonomous driving (Ly & Akhloufi, 2020), and game AI (Harmer et al.,
2018).

Behavioral Cloning (BC). BC (Pomerleau, 1989; Torabi et al., 2018) imitates an expert policy
through supervised learning and is widely used for its simplicity and effectiveness across various
domains. Despite its benefits, BC struggles to generalize to states not covered in expert demonstrations
because of compounding error (Ross et al., 2011; Florence et al., 2022). While some methods aim to
restrict the agent from deviating (Ross et al., 2011; Zhao et al., 2023), the challenge of generalization
persists.

Inverse Reinforcement Learning (IRL). IRL methods (Ng & Russell, 2000) aim at inferring a
reward function that could best explain the demonstrated behavior and subsequently learn a policy
using the inferred reward function. Nevertheless, the problem of inferring reward functions is ill-
posed since different reward functions could induce the same demonstrated behavior. Therefore,
IRL methods often impose constraints on reward functions or policies to ensure the optimality and
uniqueness of the demonstrated behavior (Ng & Russell, 2000; Abbeel & Ng, 2004; Syed et al., 2008;
Ziebart et al., 2008). Yet, these constraints could potentially restrict the generalizability of learned
policies.

Adversarial Imitation Learning (AIL). Instead of inferring underlying reward functions, AIL
methods aim to directly match the state-action distributions of an agent and an expert through
adversarial training. Generative adversarial imitation learning (GAIL; Ho & Ermon, 2016) and its
extensions (Torabi et al., 2019; Kostrikov et al., 2019b; Zolna et al., 2021; Jena et al., 2021) train a
generator policy to imitate expert behaviors and a discriminator to differentiate between the expert
and the generator’s state-action pair distributions, which resembles the idea of generative adversarial
networks (GAN; Goodfellow et al., 2014).

Due to its simplicity and effectiveness, GAIL has been widely applied to various domains (Aytar
et al., 2018; Ravichandar et al., 2020; Kiran et al., 2021). Over the past years, researchers and
practitioners have proposed numerous improvements to enhance GAIL’s sample efficiency, scalability,
and robustness (Orsini et al., 2021), including modifications to discriminator’s loss function (Fu et al.,
2018), extensions to off-policy RL algorithms (Kostrikov et al., 2019a), and exploration of various
similarity measures (Fu et al., 2018; Arjovsky et al., 2017; Dadashi et al., 2020). In this work, to
improve GAIL’s generalization capabilities, we propose to use the diffusion model as a discriminator
in GAIL by designing an objective.

3 PRELIMINARIES

This work proposes a novel adversarial imitation learning framework that integrates a diffusion model
into generative adversarial imitation learning. Hence, this section presents background on these two
topics.
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3.1 GENERATIVE ADVERSARIAL IMITATION LEARNING (GAIL)

GAIL (Ho & Ermon, 2016) establishes a connection between generative adversarial network
(GAN) (Goodfellow et al., 2014) and imitation learning. GAIL employs a generator, Gθ, that
acts as a policy πθ, mapping a state to an action. The generator aims to produce a state-action
distribution (ρπθ

) which closely resembles the expert state-action distribution ρπE
. On the other

hand, discriminator Dω functions as a binary classifier, attempting to differentiate the state-action
distribution of the generator (ρπθ

) from the expert’s (ρπE
). The optimization equation of GAIL can

be formulated using the Jensen-Shannon divergence, which is equivalent to the minimax equation of
GAN. The minimax optimization of GAIL can be derived as follows:

min
θ

max
ω

Ex∼ρπθ
[logDω(x)] + Ex∼ρπE

[log(1−Dω(x))], (1)

where ρπθ
and ρπE

are the state-action distribution from an agent πθ and expert policy πE respectively.
The loss function for the discriminator is stated as−(Ex∼ρπθ

[logDω(x)]+Ex∼ρπE
[log(1−Dω(x))]).

For a given state, the generator tries to take expert-like action; the discriminator takes state-action
pairs as input and computes the probability of the input originating from an expert. Then the generator
uses a reward function −Ex∼ρπθ

[logDω(x)] or −Ex∼ρπθ
[logDω(x)] + λH(πθ) to optimize its

network parameters, where entropy term H is a policy regularizer controlled by λ ≥ 0.

3.2 DIFFUSION MODELS

Reverse diffusion process

q(xt |xt−1)

pϕ(xt−1 |xt)
xt xt−1 x0xT

Forward diffusion process

Figure 1: Denoising Diffusion Probabilistic Model.
Latent variables x1, ...,xT are produced from the data
point x0 via the forward diffusion process, i.e., gradu-
ally adding noises to the latent variables. The diffusion
model ϕ learns to reverse the process by denoising the
noisy data to reconstruct the original data point x0.

Diffusion models have demonstrated state-
of-the-art performance on a wide range of
tasks (Sohl-Dickstein et al., 2015; Nichol &
Dhariwal, 2021; Dhariwal & Nichol, 2021) In
this work, we employ a Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020)
to model expert state-action pairs and adapt it
to condition on binary classification labels (real
and fake).

DDPM introduces a gradual adding of noise
to data samples (i.e., concatenated state-action
pairs) following a variance schedule β1, . . . , βt until achieving an isotropic Gaussian distribution
(refer to as the forward diffusion process). This process is mathematically expressed as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (2)

One of the forward process properties allows direct closed-form sampling of data xt at any arbitrary
time step t:

q(xt|x0) = N (xt;
√
ᾱtx0, ᾱtI) (3)

where ᾱt =
∏t

s=1 αs. Consequently, xt is expressed as a linear combination of x0 and noise
ϵ ∼ N (0, I):

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (4)

The diffusion model ϕ is trained to predict the noise ϵϕ(xt, t) applied to the original data, guided by
the loss function

LDM = Et∼T

[
∥ϵϕ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥2

]
(5)

This process facilitates the model’s ability to reconstruct original data samples through the reverse
diffusion process, as illustrated in Figure 1. In essence, DDPM learns to discern a state-action
distribution by effectively denoising noisy sampled data.

This paper adapts the original training setup to learn the forward and reverse processes in a conditional
manner. Specifically, the forward process captures the data distribution q(xt|xt−1, y), enabling the
model to sample data based on a conditional classifier y. Conversely, modeling the conditional data
distribution pϕ(xt−1|xt, y) allows the generation of samples with attributes corresponding to the
condition y.
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Figure 2: Diffusion Rewards Guided Adversarial Imitation Learning. Our proposed framework DRAIL
incorporates a diffusion model into GAIL. (a) We propose a diffusion discriminative classifier that learns to
distinguish expert data (sE ,aE) from agent data (si,ai) using a diffusion model ϕ. This classifier learns to
denoise expert and agent state-action pairs concatenated with a real label c+ or a fake label c− by optimizing
the binary cross-entropy losses Lexpert

BCE and Lagent
BCE . (b) The πθ learns to maximize the diffusion reward Rϕ

computed based on the output of the diffusion discriminative classifier Dϕ that takes the state-action pairs from
the policy as input.

4 APPROACH

We propose a novel adversarial imitation learning framework incorporating diffusion models into the
generative adversarial imitation learning (GAIL) framework, illustrated in Figure 2. Specifically, we
employ a diffusion model to construct an enhanced discriminator, diffusion discriminative classifier,
to provide more precise and smoother rewards for policy learning. We initiate our discussion by
exploring a naive integration of the diffusion model, which directly reconstructs the reward values
from Gaussian noise conditioned on the state-action pairs. However, as detailed in Section 4.1, we
identify inherent issues with this naive approach. Subsequently, in Section 4.2, we introduce our
proposed method that employs a conditional diffusion model to construct a diffusion discriminative
classifier, which can provide diffusion rewards for policy learning. Finally, the overall algorithm of
our method is outlined in Section 4.3.

4.1 REWARD RECONSTRUCTION WITH DIFFUSION MODEL

The conditional diffusion model is widely employed for data generation, involving sampling data
from the trained diffusion model. An intuitive approach to incorporating a conditional diffusion
model as a GAIL discriminator by training it to denoise a real/fake label conditioned on expert
or agent state-action pairs. Then, we can reward the policy based on the reconstructed realness
from sampled Gaussian noise conditioned on the state-action pairs from the policy. Specifically, the
diffusion model pϕ(Rt−1|Rt, s,a) learns to denoise each time step t by conditioning on respective
state-action pairs (s,a) and restoring desired reward value R0 ∈ {0, 1}, i.e., 1 for expert state-action
pairs and 0 for agent state-action pairs, from isotropic Gaussian through a reverse diffusion process.
The loss function LR is the expected squared difference between the original noise and the predicted
one.

LR(s,a) = Et∼T

[
∥ϵϕ(Rt, t|s,a)− ϵ∥2

]
= Et∼T

[
∥ϵ̂ϕ(R0, ϵ, t|s,a)− ϵ∥2

]
(6)

To specify further, the loss functions for expert LE and agent LA state-action pairs are defined as:

LE = Et∼T,(s,a)∼DE

[
∥ϵ̂ϕ(1, ϵ, t|s,a)− ϵ∥2

]
,LA = Et∼T,(s,a)∼DA

[
∥ϵ̂ϕ(0, ϵ, t|s,a)− ϵ∥2

]
.

(7)
Following training, the trained diffusion model can be employed to sample the reward value by
progressively restoring the data sample from Gaussian noise through a reverse diffusion process
conditioned on the provided state-action pair. The resultant reconstructed reward value subsequently
serves as a training signal for the policy.

Nevertheless, the sampling process is time-consuming as each sample requires T iterations to restore
the actual reward value, and RL often requires millions of samples for training, resulting in a billion-
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level overall training scale. Consequently, it is impractical to intuitively integrate the diffusion model
into the GAIL framework by directly reconstructing reward values.

4.2 DIFFUSION DISCRIMINATIVE CLASSIFIER

Our goal is to yield a diffusion model reward given an agent state-action pair without going through
the whole diffusion generation process. To this end, we proposed to leverage the diffusion model ϕ to
predict the noise injected into the input state-action pairs, which requires only a single denoising step,
instead of direct reward reconstruction. Our key insight is that the diffusion loss, i.e., the difference
between predicted noise and input noise, can indicate how well the state-action pair fits the expert
demonstration, effectively acting as the reward value for a given state-action pair. We formulate the
diffusion loss Ldiff as follows:

Ldiff(s,a, c) = Et∼T

[
∥ϵ̂ϕ(s,a, ϵ, t|c)− ϵ∥2

]
(8)

Here, c ∈ {c+, c−}, real label c+ represents the condition for fitting expert demonstration while fake
label c− represents the opposite. We implement c+ as 1 and c− as 0. Then, we use Ldiff(s,a, c

+)
and Ldiff(s,a, c

−) to indicate how well the input state-action pair fits expert or agent demonstration1.
More specifically, when the input data is sampled from expert demonstration, L+

diff should be close
to 0, and L−

diff should be as large as possible. On the contrary, when the input data is sampled from
agent storage, L+

diff should be as large as possible, and L−
diff should close to 0.

While Ldiff can indicate the “realness” or the “fakeness” of a state-action pair to some extent,
optimizing a policy using rewards with this wide value range [0,∞) can be difficult (Henderson et al.,
2018). To devise a discriminative classifier with a bounded output range of [0, 1] given the diffusion
model’s output Ldiff, we construct a Diffusion Discriminative Classifier Dϕ : S ×A ∈ R (as shown
in Figure 2) that integrates L+

diff and L−
diff to compute the “realness” of a state-action pair within the

bounded range:

Dϕ(s,a) =
e−Ldiff(s,a,c

+)

e−Ldiff(s,a,c+) + e−Ldiff(s,a,c−)
(9)

=
1

1 + e−[Ldiff(s,a,c−)−Ldiff(s,a,c+)]
= σ(Ldiff(s,a, c

−)− Ldiff(s,a, c
+)), (10)

where σ(x) = 1/(1 + e−x) denotes the sigmoid function. The design of our diffusion discriminative
classifier aligns with the GAIL discriminator (Ho & Ermon, 2016), which is proven effective in
providing learning signals to the policy.

Consequently, we can optimize our proposed Dϕ as follows:
max

D∈RS×A
E(s,a)∈τE [log(Dϕ(s,a))] + E(s,a)∈τi [log(1−Dϕ(s,a))] (11)

where τE and τi represent the expert trajectories and agent trajectories at training step i.

Intuitively, the discriminator Dϕ is trained to predict a value closer to 1 when the input state-action
pairs are sampled from expert demonstration (i.e., trained to minimize L+

diff and maximize L−
diff), and

0 if the input state-action pairs are obtained from the agent online interaction (i.e., trained to minimize
L−

diff and maximize L+
diff).

Algorithm 1 Diffusion Rewards Guided Adversarial Imitation Learning (DRAIL)

1: Input: Expert trajectories τE , initial policy parameters θ0, and initial diffusion discriminator
parameters ϕ0

2: for i = 0, 1, 2, . . . do
3: Sample agent trajectories τi ∼ πθi
4: Compute the output of diffusion discriminative classifier Dϕ (Eq. 9) and the loss function L

(Eq. 12)
5: Update the diffusion model ϕi+1 ← ϕi using∇L
6: Compute the diffusion rewardRϕ(s,a) with Eq. 13
7: Update the policy θi+1 ← θi with any RL algorithm with respect to rewardRϕ

8: end for
1For simplicity, we will use the notations L+

diff and L−
diff to represent Ldiff(s,a, c

+) and Ldiff(s,a, c
−),

respectively, in the rest of the paper.
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(a) MAZE (b) FETCHPICK (c) FETCHPUSH (d) HANDROTATE (e) ANTREACH (f) WALKER

Figure 3: Environments & Tasks. (a) MAZE: A point-mass agent (green) within a 2D maze is trained to move
from its initial position to reach the goal (red). (b)-(c) FETCHPICK and FETCHPUSH: The manipulation
tasks is implemented with a 7-DoF Fetch robotics arm. FETCHPICK and FETCHPUSH require picking up or
pushing an object to a target location (red). (d) HANDROTATE: For this dexterous manipulation task, a Shadow
Dexterous Hand is employed to in-hand rotate a block to achieve a target orientation. (e) ANTREACH: This
task is training a quadruped ant to reach a goal randomly positioned along the perimeter of a half-circle with
a radius of 5 m. (f) WALKER: This locomotion task requires training a bipedal walker policy to achieve the
highest possible walking speed while maintaining balance.

4.3 OVERALL ALGORITHM

Our proposed method adheres to the fundamental AIL framework, where the discriminator and
policy are updated alternately. In the discriminator step, we compute the loss function L of the target
function following Eq. 11:

L = E(s,a)∈τE [− log(Dϕ(s,a))]︸ ︷︷ ︸
Lexpert

BCE

+E(s,a)∈τi [− log(1−Dϕ(s,a))]︸ ︷︷ ︸
Lagent

BCE

(12)

where L can be viewed as the sum of the expert binary cross-entropy loss Lexpert
BCE and the agent

binary cross-entropy loss Lagent
BCE . We then update the diffusion discriminator parameters based on the

gradient of L.

In the policy step, we adopt the optimization objective proposed by Fu et al. (2018) as our diffusion
reward signal for the policy to learn:

Rϕ(s,a) = log(Dϕ(s,a))− log(1−Dϕ(s,a)). (13)

We can optimize the policy using any RL algorithm to maximize the diffusion rewards provided by
the diffusion discriminative classifier, bringing the policy closer to the expert policy. Specifically,
we utilize PPO as our policy update algorithm. The algorithm is presented in Algorithm 1 and the
overall framework is illustrated in Figure 2.

5 EXPERIMENTS

We extensively evaluate our proposed framework DRAIL in diverse continuous control domains,
including navigation, robot arm manipulation, and locomotion. We also examine the generalizability
and data efficiency of DRAIL in Section 5.4 and Section 5.5. The reward function learned by DRAIL
is presented in Section 5.6.

5.1 EXPERIMENTAL SETUP

The environments, tasks, and expert demonstrations used in both the learning and evaluation phases
are introduced in this section. Further details can be found in Section B.

MAZE. We evaluate our approach in the MAZE environment, which is introduced in Fu et al. (2020)
(maze2d-medium-v2), as depicted in Figure 3a. In this task, a point-mass agent is trained to navigate
from a randomly determined start location to the goal. The agent accomplishes the task by iteratively
predicting its x and y acceleration. We utilize a controller to generate 100 demonstrations, comprising
18,525 transitions.

FETCHPICK and FETCHPUSH. Aiming at evaluating our approach in robot arm manipulation
environments, we evaluate our approach in two 7-DoF Fetch tasks: FETCHPICK and FETCHPUSH,
which are depicted in Figure 3b and Figure 3c, respectively. In FETCHPICK, the objective is to pick
up an object from the table and lift it to a target location, while FETCHPUSH requires the arm to push
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DRAIL (Ours)DRAIL-UNGAILDiffusion PolicyBC WAIL

(a) MAZE (b) FETCHPICK (c) FETCHPUSH

(d) HANDROTATE (e) ANTREACH (f) WALKER

Figure 4: Learning Efficiency. We report success rates (MAZE, FETCHPICK, FETCHPUSH, HANDROTATE,
ANTREACH) and return (WALKER), evaluated over three random seeds. Our method DRAIL learns more stably,
faster, and achieves higher or competitive success rates than the best baseline over all environments.

an object to a designated location. The demonstrations utilized for these tasks are sourced from Lee
et al. (2021). Each dataset consists of 10k transitions (303 trajectories for FETCHPICK and 185
trajectories for FETCHPUSH).

HANDROTATE. We further evaluate our approach in a challenging environment named HANDRO-
TATE, which is introduced by Plappert et al. (2018). Here, a 24-DoF Shadow Dexterous Hand is
tasked with learning to in-hand rotate a block to a target orientation, as depicted in Figure 3d. This
environment features a high-dimensional state space (68D) and action space (20D). To generate our
dataset, we collected 10k transitions (515 trajectories) using a SAC (Haarnoja et al., 2018) expert
policy that underwent training for 10M environment steps.

ANTREACH. The goal of ANTREACH is for a quadruped ant to reach a goal randomly positioned
along the perimeter of a half-circle with a radius of 5 m, as depicted in Figure 3e. The 132D state
representation includes joint angles, velocities, contact forces, and the goal position relative to the
agent. We collect 1,000 demonstrations (25k transitions) using a pre-trained policy that underwent 40
million training steps.

WALKER. The objective of WALKER is to let a bipedal agent move at the highest speed possible
while preserving its balance, as illustrated in Figure 3f. We utilize the demonstrations provided
by Kostrikov (2018), which include 5 trajectories comprising 5k state-action pairs.

5.2 BASELINES AND VARIANTS

We compare our method DRAIL with the following baselines and variants of our approach.

• Behavioral Cloning (BC) trains a policy to mimic the actions of an expert by supervisedly
learning a mapping from observed states to corresponding expert actions (Pomerleau, 1989;
Torabi et al., 2018).

• Diffusion Policy represents a policy as a conditional diffusion model (Chi et al., 2023;
Reuss et al., 2023). We implement this method according to Pearce et al. (2023). We include
this baseline to compare learning a diffusion model as a policy (diffusion policy) or reward
function (ours).
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DRAIL (Ours)DRAIL-UNGAILDiffusion PolicyBC WAIL

(a) FETCHPICK 1× (b) FETCHPICK 1.25× (c) FETCHPICK 1.75× (d) FETCHPICK 2.0×
Figure 5: Generalization Experiments in FETCHPICK. We present the performance of our proposed DRAIL
and baselines in the FETCHPICK task, under varying levels of noise in initial states and goal locations. The
evaluation spans three random seeds, and the training curve illustrates the success rate dynamics.

Figure 6: Data Efficiency.
We compare BC, GAIL,
and DRAIL using varying
amounts of expert data in
WALKER.

(a) Expert Distribution (b) GAIL Reward (c) DRAIL Reward

Figure 7: Reward Function Visualization. We present visualizations of the
learned reward values by the discriminative classifier of GAIL and the diffusion
discriminative classifier of our DRAIL. The target expert demonstration for
imitation is depicted in (a), which is a discontinuous sine function. The reward
distributions of GAIL and our DRAIL are illustrated in (b) and (c), respectively.

• Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) learns a policy
from expert demonstrations by training a discriminator to distinguish between trajectories
generated by the learned generator policy and those from expert demonstrations.

• Wasserstein Adversarial Imitation Learning (WAIL) extends GAIL by employing Wasser-
stein distance, aiming to capture smoother reward functions, proposed by Arjovsky et al.
(2017).

• DRAIL-Unnormalized (DRAIL-UN) is a variant of DRAIL, which excludes the normal-
ization term in Eq. 9. That said, we use e−Ldiff ∈ [0, 1] as the discrimination output. This
variant resembles the idea proposed by Wang et al. (2023), a concurrent work that also
integrates diffusion models into AIL.

5.3 EXPERIMENTAL RESULTS

We present the success rates (MAZE, FETCHPICK, FETCHPUSH, HANDROTATE, ANTREACH) and
return (WALKER) of DRAIL and the baselines in Figure 4. Each task is trained with three different
random seeds. More information on model architecture can be found in Section D and Section E
describes training and evaluation details.

Overall, our method DRAIL consistently outperforms GAIL across all the environments, verifying
the effectiveness of integrating our proposed diffusion discriminative classifier and diffusion rewards.

In MAZE, FETCHPUSH, and HANDROTATE tasks, our DRAIL performs competitively against our
variant DRAIL-UN and outperforms the other baselines. These two diffusion model-based AIL
algorithms exhibit superior performance compared to other baseline methods, particularly excelling
in the environment of MAZE. In FETCHPICK, our DRAIL performs competitively against Diffusion
Policy and outperforms the other baselines.

In the locomotion task, i.e., WALKER. DRAIL surpasses all AIL baselines, yet under-performing
compared to BC and Diffusion Policy. We hypothesize that WALKER requires less generalizability
to unseen states and therefore BC can achieve the best performance with sufficient expert data. We
discuss varying amounts of expert data in Section 5.5, which suggests that DRAIL outperforms BC
when less expert data is available.
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In the ANTREACH task, which blends locomotion and navigation, our method DRAIL also outper-
forms all baselines.

5.4 GENERALIZATION EXPERIMENTS

To examine the generalizability to states that are unseen from the expert demonstrations of different
methods, we extend the FETCHPICK tasks following the setting proposed by Lee et al. (2021).
Specifically, we evaluate policies learned by different methods by varying the noise injected into
initiate states (e.g., position and velocity of the robot arm) and the target block positions. We
experiment with different noise levels, including 1×, 1.25×, 1.5×, 1.75×, and 2.0×, compared to
the expert environment. That said, 1.5× means the policy is evaluated in an environment with noises
1.5× larger than those injected into expert data collection. Performing well in a high noise level setup
requires the policy to generalize to unseen states.

The results of FETCHPICK under 1×, 1.25×, 1.75×, and 2.0× noise level are presented in Figure
5. Across all noise levels, our proposed DRAIL outperforms all the baselines. In the 1.75× noise
level, DRAIL achieves a success rate of 83.97%, surpassing the best-performing baseline Diffusion
Policy, which achieves only around a success rate of 62.93%. GAIL, on the other hand, experiences
failure in 1 out of the 3 seeds, resulting in a high standard deviation (mean: 32.61, standard deviation:
56.49) despite our thorough exploration of various settings for its configuration.

We additionally conduct generalization experiments across all environments and present the results
in Section A. Overall, our method DRAIL performs competitively against our variant DRAIL-UN
and outperforms the other baselines, demonstrating our method’s superior generalization ability.

5.5 DATA EFFICIENCY

To investigate the data efficiency of DRAIL, we vary the number of expert trajectories in WALKER
and report the performance of BC, GAIL, and DRAIL. Specifically, we use 1, 2, 3, and 5 expert
trajectories, each containing 1000 transitions, and present the results in Figure 6.

The result demonstrates the superior data efficiency of our method, maintaining a return value over
5000 even when trained with a single trajectory. In contrast, BC and GAIL suffer from significant
performance drops when the amount of expert data is reduced.

5.6 REWARD FUNCTION VISUALIZATION

To analyze the learned reward functions, we design a SINE environment, where the expert state-action
pairs form a discontinuous sine wave a = sin (20sπ) +N (0, 0.05), as shown in Figure 7a. We train
GAIL and DRAIL to learn from this expert state-action distribution and visualize the discriminator
output values Dϕ to examine the learned reward function, as presented in Figure 7.

Figure 7b reveals that the GAIL discriminator exhibits excessive overfitting to the expert demonstra-
tion, rendering it ineffective in providing appropriate reward values when encountering unseen states.
In contrast, Figure 7c shows that our proposed DRAIL generalizes better to the broader state-action
distribution, yielding a more robust reward value, thereby enhancing the generalizability of learned
policies. Furthermore, the predicted reward value of DRAIL gradually decreases as the state-action
pairs deviate farther from the expert demonstration. This reward smoothness can guide the policy
even when it deviates from the expert policy. In contrast, the reward distribution from GAIL is
relatively narrow outside the expert demonstration, making it challenging to properly guide the policy
if the predicted action does not align with the expert.

6 CONCLUSION

This work proposes a novel adversarial imitation learning framework that integrates a diffusion model
into generative adversarial imitation learning. Specifically, we propose a diffusion discriminative
classifier that employs a diffusion model to construct an enhanced discriminator, yielding more
precise and smoother rewards. Then, we design diffusion rewards based on the classifier’s output
for policy learning. Extensive experiments in navigation, manipulation, and locomotion justify our
proposed framework’s effectiveness, sample efficiency, generalizability, and data efficiency.
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A FULL RESULTS OF GENERALIZATION EXPERIMENTS

A.1 EXPERIMENT SETTINGS

To show our approach’s better generalization capabilities, we extend the environment scenarios
following the setting stated in Lee et al. (2021): (1) In MAZE main experiment, the initial and
goal states of the expert dataset only constitute 50% of the potential initial and goal states. In the
generalization experiment, we gather expert demonstrations from some lower and higher coverage:
25%, 75%, and 100%. (2) In FETCHPICK, FETCHPUSH, and HANDROTATE main experiments,
the demonstrations are collected in a lower noise level setting, 1×. Yet, the agent is trained within
an environment incorporating 1.5× noise, which is 1.5 times larger noise than the collected expert
demonstration, applied to the starting and target block positions. In the generalization experiment,
we train agents in different noise levels: 1×, 1.25×, 1.5×, 1.75×, 2.0×. (3) In ANTREACH main
experiment, 0.03 random noise is added to the initial pose during policy learning. In ANTREACH
generalization experiment, we train agents in different noise levels: 0, 0.01, 0.05.

These generalization experiments simulate real-world conditions. For example, because of the
expenses of demonstration collection, the demonstrations may inadequately cover the entire state
space, as seen in setup (1). Similarly, in setups (2) and (3), demonstrations may be acquired under
controlled conditions with minimal noise, whereas the agent operating in a real environment would
face more significant noise variations not reflected in the demonstrations, resulting in a broader
distribution of initial states.

A.2 EXPERIMENT RESULTS

MAZE. Our DRAIL outperforms baselines or performs competitively against DRAIL-UN across
all demonstration coverages, as shown in Figure 8. Particularly, BC, WAIL, and GAIL’s perfor-
mance decline rapidly in the low coverage case. In contrast, diffusion model-based AIL algorithms
demonstrate sustained performance, as shown in Figure 4a. This suggests that our method exhibits
robust generalization, whereas BC and GAIL struggle with unseen states under limited demonstration
coverage.
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DRAIL (Ours)DRAIL-UNGAILDiffusion PolicyBC WAIL

(a) MAZE 100% (b) MAZE 75% (c) MAZE 50% (d) MAZE 25%

(e) FETCHPICK 1× (f) FETCHPICK 1.25× (g) FETCHPICK 1.75× (h) FETCHPICK 2.0×

(i) FETCHPUSH 1× (j) FETCHPUSH 1.25× (k) FETCHPUSH 1.75× (l) FETCHPUSH 2.0×

(m) HANDROTATE 1× (n) HANDROTATE 1.25× (o) HANDROTATE 1.75× (p) HANDROTATE 2.0×

(q) ANTREACH 0.00 (r) ANTREACH 0.01 (s) ANTREACH 0.03 (t) ANTREACH 0.05
Figure 8: Full Results of Generalization Experiments. MAZE is evaluated with different coverages of state
spaces in demonstrations, while FETCHPICK, FETCHPUSH, HANDROTATE, and ANTREACH environments
are evaluated in environments of different noise levels. The number indicates the amount of additional noise in
agent learning compared to that in the expert demonstrations, with more noise requiring harder generalization.
The noise level rises from left to right.
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FETCHPICK and FETCHPUSH. In FETCHPICK, our method outperforms all baselines across
all noise levels, as shown in Figure 8. In the 1.75× noise level, our method DRAIL achieves a
success rate of 83.97, surpassing the best-performing baseline BC, which achieves only around
51%. GAIL, on the other hand, experiences failure in 1 out of the 3 seeds, resulting in a high
standard deviation (mean: 32.61, standard deviation: 56.49) despite our thorough exploration of
various settings for its configuration. In FETCHPUSH, our method DRAIL and its variant DRAIL-UN
exhibit more robust results, in generalizing to unseen states compared to other baselines, as shown in
Figure 8. This showcases that the diffusion reward guidance could provide better generalizability
for the AIL framework. Moreover, our DRAIL is quite sample-efficient regarding interaction with
the environment during training compared to other baselines and the variant in FETCHPICK and
FETCHPUSH environment.

HANDROTATE. Our DRAIL outperforms baselines or performs competitively against DRAIL-UN
across all noise levels, as illustrated in Figure 8. Specifically, our DRAIL and DRAIL-UN achieve a
success rate of 95% at a noise level of 2.0, while GAIL and WAIL only reach approximately 42%
and 8%, respectively. Notably, WAIL attains a success rate of 51% at a noise level of 1 but struggles
to train as the noise level increases.

ANTREACH. Under a 0.03 noise level, the overall success rate of our method, the baselines, and the
variant drop dramatically, as illustrated in Figure 4e. Despite this, our DRAIL maintains a higher
success rate of 42%, surpassing other baselines that achieve success rates lower than 40%.

B ENVIRONMENT & TASK DETAILS

B.1 MAZE

Description. In a 2D maze environment, a point-maze agent learns to navigate from a starting
location to a goal location. The agent achieves this by iteratively predicting its x and y velocity.
The initial and final positions of the agent are randomly selected. The state space includes position,
velocity, and goal position. The maximum episode length for this task is set at 400, and the episode
terminates if the goal is reached earlier.

Expert Dataset. The expert dataset comprises 100 demonstrations, which includes 18, 525 transitions
provided by Lee et al. (2021).

B.2 FETCHPUSH & FETCHPICK

Description. In the FETCHPUSH task, the agent is required to push an object to a specified target
location. On the other hand, in the FETCHPICK task, the objective is to pick up an object from a table
and move it to a target location.

According to the environment setups stated in Lee et al. (2021), the 16-dimensional state represen-
tation includes the angles of the robot joints, and the initial three dimensions of the action vector
represent the intended relative position for the next time step. The first three dimensions of the action
vector denote the intended relative position in the subsequent time step. In the case of FETCHPICK, an
extra action dimension is incorporated to specify the distance between the two fingers of the gripper.
The maximum episode length for this task is set at 50 for FETCHPICK and 60 for FETCHPUSH, and
the episode terminates if the agent reaches the goal earlier.

Expert Dataset. The expert dataset for FETCHPICK comprises 303 trajectories, amounting to 10, 000
transitions provided by Lee et al. (2021).

B.3 HANDROTATE

Description. In the task HANDROTATE proposed by Plappert et al. (2018), a 24-DoF Shadow
Dexterous Hand is designed to rotate a block in-hand to a specified target orientation. The 68D state
representation includes the agent’s joint angles, hand velocities, object poses, and target rotation.
The 20D action vector represents the joint torque control of the 20 joints. Notably, HANDROTATE is
challenging due to its high-dimensional state and action spaces. We follow the experimental setup
outlined in Plappert et al. (2018) and Lee et al. (2021), where rotation is constrained to the z-axis, and
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allowable initial and target z rotations are within [− π
12 ,

π
12 ] and [π3 ,

2π
3 ], respectively. The maximum

episode length for this task is set at 50, and the episode terminates if the hand reaches the goal earlier.

Expert Dataset. Aiming at collecting expert demonstrations, we train a SAC (Haarnoja et al., 2018)
policy utilizing dense rewards for 10M environment steps. The dense reward assigned at each time
step t is R(st, at) = dt−dt+1, where dt and dt+1 denotes the angles (in radians) between the current
and desired block orientations before and after executing the actions. Following the training phase,
the SAC expert policy attains a success rate of 59.48%. Subsequently, we extract 515 successful
trajectories (equivalent to 10k transitions) from this policy to construct our expert dataset for the
HANDROTATE task.

B.4 ANTREACH

Description. The ANTREACH task features a four-leg ant robot reaching a randomly assigned target
position located within a range of half-circle with a radius of 5 meters. The task’s state is represented
by a 132-dimension vector, including joint angles, velocities, and the relative position of the ant
towards the goal. Expert data collection for this task is devoid of any added noise, while random
noise is introduced during the training and inference phases. Consequently, the policy is required to
learn to generalize to states not present in the expert demonstrations. The maximum episode length
for this task is set at 50, and the episode terminates if the ant reaches the goal earlier.

Expert Dataset. The expert dataset comprises 10000 state-action pairs provided by Lee et al. (2021).

B.5 WALKER

Description. WALKER task involves guiding an agent to move towards the x-coordinate as fast
as possible while maintaining balance. An episode terminates either when the agent experiences
predefined unhealthy conditions in the environment or when the maximum episode length (1000) is
reached. The agent’s performance is evaluated over 100 episodes with three different random seeds.
The return of an episode is the cumulative result of all timesteps within that episode. The 17D state
includes joint angles, angular velocities of joints, and velocities of the x and z-coordinates of the top.
The 6D action defines the torques that need to be applied to each joint of the walker avatar.

Expert Dataset. The expert dataset consists of 5 trajectories with 5k state-action pairs provided
by Kostrikov (2018)

C SAMPLE EFFICIENCY AND DATA EFFICIENCY

To illustrate that utilizing the diffusion reward in our DRAIL provides better sample efficiency
in terms of interacting with the environment and data efficiency in terms of expert demonstration
compared to a simple MLP, we present the full training curve in (Figure 9). This experiment involves
training our DRAIL, GAIL, and BC in the WALKER environment with different numbers of expert
trajectories, as detailed in Section 5.5.

The results demonstrate that our DRAIL learns faster compared to the AIL baseline (GAIL), indicating
superior sample efficiency in terms of environment interaction. Moreover, our method exhibits
robustness when reducing the trajectory number from 5 to 1, with performance only decreasing from
approximately 6000 to 5500. In contrast, BC’s performance experiences a dramatic drop from 7000
to lower than 1000. We attribute GAIL’s poor performance to sample inefficiency rather than the
amount of expert data.

D MODEL ARCHITECTURE

This section presents the model architecture of all the experiments. Appendix D.1 describe the model
architecture of all methods used in Section 5.3.
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Table 1: Model Architectures. We report the architectures used for all the methods on all the tasks.

Method Models Component MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER ANTREACH

BC Policy π

# Layers 3 4 3 4 3 3
Input Dim. 6 16 16 68 17 132

Hidden Dim. 256 256 256 512 256 256
Output Dim. 2 4 3 20 6 8

Diffusion Policy Policy π

# Layers 5 5 5 5 7 6
Input Dim. 8 20 19 88 23 140

Hidden Dim. 256 1200 1200 2100 1024 1200
Output Dim. 2 4 3 20 6 8

GAIL

Discriminator D

# Layers 3 4 5 4 5 5
Input Dim. 8 20 19 88 23 140

Hidden Dim. 64 64 64 128 64 64
Output Dim. 1 1 1 1 1 1

Policy π

# Layers 3 3 3 3 3 3
Input Dim. 6 16 16 68 17 132

Hidden Dim. 64 64 256 64 256 256
Output Dim. 2 4 3 20 6 8

WAIL

Discriminator D

# Layers 3 4 5 4 5 5
Input Dim. 8 20 19 88 23 140

Hidden Dim. 64 64 64 128 64 64
Output Dim. 1 1 1 1 1 1
Reg. Value ϵ 0 0 0.01 0 0.1 0.01

Policy π

# Layers 3 3 3 3 3 3
Input Dim. 6 16 16 68 17 132

Hidden Dim. 64 64 256 64 256 256
Output Dim. 2 4 3 20 6 8

DRAIL (Ours)

Diffusion Model ϕ

# Layers 5 4 5 3 5 5
Input Dim. 18 30 29 98 33 150

Hidden Dim. 128 128 1024 128 1024 1024
Output Dim. 8 20 19 88 23 140

Label Dim. |c| 10 10 10 10 10 10

Policy π

# Layers 3 3 3 3 3 3
Input Dim. 6 16 16 68 17 132

Hidden Dim. 64 64 256 64 256 256
Output Dim. 2 4 3 20 6 8

DRAIL-UN

Diffusion Model ϕ

# Layers 5 4 5 3 5 5
Input Dim. 8 20 19 88 23 140

Hidden Dim. 128 128 1024 128 1024 1024
Output Dim. 8 20 19 88 23 140

Policy π

# Layers 3 3 3 3 3 3
Input Dim. 6 16 16 68 17 132

Hidden Dim. 64 64 256 64 256 256
Output Dim. 2 4 3 20 6 8
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DRAIL (Ours)GAILBC

(a) WALKER 1 trajectory (b) WALKER 2 trajectories (c) WALKER 3 trajectories (d) WALKER 5 trajectories

Figure 9: Sample Efficiency and Data Efficiency. We report the full training curves of BC, GAIL, and DRAIL
using varying amounts of expert data in WALKER. Our DRAIL demonstrates superior sample efficiency in terms
of environment interaction and data efficiency in terms of expert demonstration.

D.1 MODEL ARCHITECTURE OF DRAIL, DRAIL-UN, AND THE BASELINES

In Section 5.3, we conducted a comparative analysis between our proposed DRAIL and its variant,
DRAIL-UN, along with several baseline approaches (BC, Diffusion Policy, GAIL, WAIL) across six
diverse environments. We applied Multilayer Perceptron (MLP) for the policy of BC, the conditional
diffusion model in Diffusion Policy, as well as the policy and the discriminator of GAIL and WAIL.
For our proposed DRAIL and DRAIL-UN, MLPs were employed to the policy and diffusion model
of the diffusion discriminative classifier. The activation functions used for the MLPs in the diffusion
model were ReLU, while hyperbolic tangent was employed for the others. The total timestep T
for all diffusion models in this paper is set to 1000 and the scheduler used for diffusion models is
cosine scheduler (Nichol & Dhariwal, 2021). Further details regarding the parameters for the model
architecture can be found in Table 1.

BC. We maintained a concise model for the policy of BC to prevent excessive overfitting to expert
demonstrations. This precaution is taken to mitigate the potential adverse effects on performance
when confronted with environments exhibiting higher levels of noise.

Diffusion Policy. Based on empirical results and Wang et al. (2024), the Diffusion Policy performs
better when implemented with a deeper architecture. Consequently, we have chosen to set the policy’s
number of layers to 5.

GAIL. The detailed model architecture for GAIL is presented in Table 1.

WAIL. We set the ground transport cost and the type of regularization of WAIL as Euclidean
distance and L2-regularization. The regularization value ϵ is provided in Table 1.

DRAIL. The conditional diffusion model of the diffusion discriminative classifier in our DRAIL is
constructed by concatenating either the real label c+ or the fake label c− to the noisy state-action
pairs as the input. The model then outputs the predicted noise applied to the state-action pairs. The
dimensions of both c+ and c− are reported in Table 1.

DRAIL-UN. In DRAIL-UN, the conditional diffusion model is not utilized as it only needs to
consider the numerator of Equation (9). Consequently, the diffusion model takes only the noisy
state-action pairs as input and outputs the predicted noise value.

E TRAINING DETAILS

E.1 TRAINING HYPERPARAMTERS

The hyperparameters employed for all methods across various tasks are outlined in Table 2. The Adam
optimizer (Kingma & Ba, 2015) is utilized for all methods, with the exception of the discriminator in
WAIL, for which RMSProp is employed. Linear learning rate decay is applied to all policy models.

Due to the potential impact of changing noise levels on the quality of agent data input for the
discriminator, the delicate balance between the discriminator and the AIL method’s policy may be
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Table 2: Hyperparameters. This table presents the overview of the hyperparameters used for all the methods
across various tasks.

Method Hyperparameter MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER ANTREACH

BC
Learning Rate 0.00005 0.0008 0.0002 0.0001 0.0001 0.001

Batch Size 128 128 128 128 128 128
# Epochs 2000 1000 1000 5000 1000 1000

Diffusion Policy
Learning Rate 0.0002 0.00001 0.0001 0.0001 0.0001 0.00001

Batch Size 128 128 128 128 128 128
# Epochs 20000 20000 10000 2000 5000 10000

GAIL
Discriminator Learning Rate 0.001 0.00001 0.000008 0.0001 0.0000005 0.0001

Policy Learning Rate 0.0001 0.00005 0.0002 0.0001 0.0001 0.0001
Environment Step 25000000 25000000 5000000 5000000 25000000 10000000

WAIL
Discriminator Learning Rate 0.00001 0.0001 0.00008 0.0001 0.0000008 0.00001

Policy Learning Rate 0.00001 0.0005 0.0001 0.0001 0.0001 0.0001
Environment Step 25000000 25000000 5000000 5000000 25000000 10000000

DRAIL (Ours)
Discriminator Learning Rate 0.001 0.0001 0.001 0.0001 0.0002 0.001

Policy Learning Rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Environment Step 25000000 25000000 5000000 5000000 25000000 10000000

DRAIL-UN
Discriminator Learning Rate 0.001 0.0001 0.0001 0.0001 0.0001 0.0001

Policy Learning Rate 0.0001 0.0001 0.00005 0.0001 0.0001 0.0001
Environment Step 25000000 25000000 5000000 5000000 25000000 10000000

Table 3: PPO training parameters. This table reports the PPO training hyperparameters used for each task.

Hyperparameter MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER ANTREACH

Clipping Range ϵ 0.2 0.2 0.2 0.2 0.2 0.2
Discount Factor γ 0.99 0.99 0.99 0.99 0.99 0.99
GAE Parameter λ 0.95 0.95 0.95 0.95 0.95 0.95

Value Function Coefficient 0.5 0.5 0.5 0.5 0.5 0.5
Entropy Coefficient 0.0001 0.0001 0.001 0.0001 0.001 0.001

disrupted. Therefore, we slightly adjusted the learning rate for the policy and the discriminator for
different noise levels on each task. The reported parameters in Table 2 correspond to the noise levels
presented in Figure 4.

E.2 REWARD FUNCTION DETAILS

As explained in Section 4.3, we adopt the optimization objective proposed by (Fu et al., 2018) as
diffusion reward signal for the policy learning in our DRAIL. To maintain fairness in comparisons,
we apply the same reward function to our variant DRAIL-UN and GAIL. For WAIL, we adhere to
the approach outlined in the original paper, wherein the output of the discriminator directly serves as
the reward function. For each environment, we set a consistent value for the environment interaction
step across all AIL approaches.

In our experiments, we employ Proximal Policy Optimization (PPO) (Schulman et al., 2017), a
widely used policy optimization method. We maintain all hyperparameters of PPO constant across
methods for a given task, except the learning rate, which is adjusted for each method. The PPO
hyperparameters for each task are presented in Table 3.

19


	Introduction
	Related Work
	Preliminaries
	Generative Adversarial Imitation Learning (GAIL)
	Diffusion Models

	Approach
	Reward Reconstruction with Diffusion Model
	Diffusion Discriminative Classifier
	Overall Algorithm

	Experiments
	Experimental Setup
	Baselines and Variants
	Experimental Results
	Generalization Experiments
	Data Efficiency
	Reward Function Visualization

	Conclusion
	Bibliography
	 
	Full Results of Generalization Experiments
	Experiment Settings
	Experiment Results

	Environment & Task Details
	Maze
	FetchPush & FetchPick
	HandRotate
	AntReach
	Walker

	Sample Efficiency and Data Efficiency
	Model Architecture
	Model Architecture of DRAIL, DRAIL-UN, and the Baselines

	Training Details
	Training Hyperparamters
	Reward Function Details



